“Erro padrão” refere-se ao desvio padrão da distribuição estatística da amostra. Em outras palavras, pode ser usado para medir a precisão da média da amostra. Muitos usos do erro padrão assumem implicitamente uma distribuição normal. Para calcular o erro padrão, role para baixo até a Etapa 1.
Etapa
Parte 1 de 3: Noções básicas
Etapa 1. Compreenda o desvio padrão
O desvio padrão da amostra é uma medida de quão dispersos estão os números. O desvio padrão da amostra é geralmente indicado por s. A fórmula matemática para o desvio padrão é mostrada acima.
Etapa 2. Encontre a média da população
A média da população é a média de um conjunto de números que inclui todos os números de todo o grupo - em outras palavras, a média de todo o conjunto de números e não a amostra.
Etapa 3. Descubra como calcular a média aritmética
A média aritmética é a média: o número de coleções de valores dividido pelo número de valores na coleção.
Etapa 4. Identifique a média da amostra
Quando a média aritmética é baseada em uma série de observações obtidas por amostragem de uma população estatística, é chamada de “média da amostra”. Esta é a média de um conjunto de números que inclui a média de alguns dos números em um grupo. É denotado como:
Etapa 5. Compreenda a distribuição normal
A distribuição normal, a mais comumente usada de todas as distribuições, é simétrica, com um único pico central na média (ou média) dos dados. A forma da curva é semelhante à de um sino, com o gráfico caindo uniformemente em ambos os lados da média. Cinqüenta por cento da distribuição está à esquerda da média e cinquenta por cento à direita. A distribuição normal é controlada pelo desvio padrão.
Etapa 6. Conheça a fórmula básica
A fórmula para o erro padrão médio da amostra é mostrada acima.
Parte 2 de 3: Calculando o Desvio Padrão
Etapa 1. Calcule a média da amostra
Para encontrar o erro padrão, você deve primeiro determinar o desvio padrão (porque o desvio padrão, s, faz parte da fórmula do erro padrão). Comece encontrando a média dos valores da amostra. A média da amostra é expressa como a média aritmética das medições x1, x2,… xn. É calculado pela fórmula conforme mostrado acima.
-
Por exemplo, suponha que você queira calcular o erro padrão da média da amostra para uma medição do peso de cinco moedas, conforme listado na tabela abaixo:
Você calculará a média da amostra inserindo os valores de peso na fórmula, assim:
Etapa 2. Subtraia a média da amostra de cada medição e, a seguir, eleve os valores ao quadrado
Depois de ter a média da amostra, você pode expandir a tabela subtraindo-a de cada medição individual e, em seguida, elevando o resultado ao quadrado.
No exemplo acima, a tabela expandida ficaria assim:
Etapa 3. Encontre o desvio total da medição da média da amostra
O desvio total é a média das diferenças nos quadrados da média da amostra. Adicione os novos valores para defini-los.
-
No exemplo acima, o cálculo é o seguinte:
Esta equação fornece o desvio quadrado total da medição da média da amostra. Observe que o sinal da diferença não é importante.
Etapa 4. Calcule o desvio médio quadrático da média da amostra
Depois de saber o desvio total, encontre o desvio médio dividindo por n-1. Observe que n é igual ao número de medições.
No exemplo acima, existem cinco medidas, então n-1 é igual a 4. Calcule da seguinte forma:
Etapa 5. Encontre o desvio padrão
Agora você tem todos os valores necessários para usar a fórmula de desvio padrão, s.
-
No exemplo acima, você calcularia o desvio padrão da seguinte maneira:
Seu desvio padrão é 0,0071624.
Parte 3 de 3: Encontrando o erro padrão
Etapa 1. Use o desvio padrão para calcular o erro padrão, usando a fórmula básica
-
No exemplo acima, calcule o erro padrão da seguinte maneira:
Seu erro padrão (desvio padrão da média da amostra) é 0,0032031 gramas.
Pontas
- O erro padrão e o desvio padrão são freqüentemente confundidos. Observe que o erro padrão representa o desvio padrão da distribuição estatística da amostra, não a distribuição dos valores individuais.
- Em revistas científicas, o erro padrão e o desvio padrão às vezes são confusos. O sinal ± é usado para combinar essas duas medições.